

Petr Ospalý
May 2025

Intro to Operating Systems

Operating System
● Umbrella term for a software which exposes hardware and

other features via some high-level interface

● The hardware coverage, its exposure and the sophistication
of the interface can vary greatly between different Operating
Systems

● The most trivial OS can be just a firmware running on a
handheld device (PDAs, GSM phones, graphic calculators)

● As long as the software enables the user to run custom
program, routine or application then it is an OS

Examples of OSes (1/3)
● On the lowest side of

things – a firmware can
be dubbed an OS – for
example this printer is
running port of DOOM

● https://canitrundoom.org/

● https://youtu.be/XLHx3vO
7KJM

https://canitrundoom.org/
https://youtu.be/XLHx3vO7KJM
https://youtu.be/XLHx3vO7KJM

Examples of OSes (2/3)
● MS Windows - the most

widely used desktop OS

● OSX/Mac – Bundled
together with Apple
hardware – the second
most distributed desktop
system

● Android – Mobile OS with
Linux kernel

Examples of OSes (3/3)
● Gaming Consoles

● Playstation OS

● Linux on PS2

NIX family of OSes
● UNIX*

● *BSD

● Linux

● https://en.wiki
pedia.org/wiki/
Unix_wars

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

Commercial UNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,

Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO/Xinuos

2010

4.4

7.0

12.2

macOS 11.6

9.2

11.4

7.2

11 i v3

5.15

3.4

21.0

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 6.0

2020

7

https://en.wikipedia.org/wiki/Unix_wars
https://en.wikipedia.org/wiki/Unix_wars
https://en.wikipedia.org/wiki/Unix_wars

Generic OS
● „Sits“ on top of hardware

● Consists of device drivers,
kernel (the core) and user
interface

● User space programs talk to
the interface and are
shielded from hardware

Linux OS (1/5)
● Initial implementation created by

Finnish student Linus Torvalds
who wanted its own UNIX-like
system

● First public version released in
1991

● Currently the biggest open-source
project and the backbone of the
internet and cloud infrastructure

Linux OS (2/5)
● Linux project actually covers only the

kernel portion of the Operating
System

● To have complete feature-full OS one
has to add glibc library and other
user space programs and utilities –
like a bootloader without which Linux
will not even load (boot up)

Linux OS (3/5)
● So this “problem” is solved by

bundling Linux kernel and all the
necessary software together as so
called “Linux distribution”

● There are countless such “distros”
and new are created every year

● Most of them are just based on a few
major ones

Linux OS (4/5)
● Linux is a new implementation of the

UNIX OS – made from scratch

● UNIX was elegant and ubiquitous OS
of the 1970+

● Linux does not share any of its code
(while BSD variants do) but it
provides the same faculties which
made the UNIX so popular

Linux OS (5/5)
● The classic unix toolbox (grep, sed,

awk, shell, pipes, redirections etc.)
works (on the surface) the same in
Linux as in the old systems

● Linux of course is a modern and
powerful OS which over the years
added much more new functionality
and features and hw support

Distribution
● Linux is just a kernel and more

components are needed to have fully
operational OS

● Linux distribution is answer to that

● Major distros are only few and there is just
plenty of offshoots and derivatives

● Maintainers came up with packages as a
solution to conveniently distribute their
Linux OS

Software packages (1/4)
● Linux community pioneered software distribution

via packages and centralized repositories

● Package is a an archive with metadata tracking
its own dependencies – recursively

● Initial packages were just simple tar archives and
dependencies might had to be resolved manually

● Modern package managers will deal with all the
work to install and track dependencies – both
when installing and uninstalling

Software packages (2/4)
● Other platforms (like Windows) for

longest time had nothing similar

● One had to visit software website and
download installer manually

● Mobile app stores are similar in
concept to software repositories

● Every distribution has their own
repository

Software packages (3/4)
● Software handling packages is called: package manager

● Both the format and the tool differ between distro families,
e.g.:

– Debian (and Ubuntu family): apt* tools and *.deb

– RedHat (CentOS, Fedora...): yum/dnf and *.rpm

– Arch Linux: pacman and *.pkg.tar.zst

● They also support source packages which need to be
compiled first (Gentoo is solely source based)

● Packages are plain tar archives with extra metadata files
inside to which only the relevant package manager will
understand

Software packages (4/4)
● Examples of usage (updating the system):

● apt-get update && apt-get upgrade # debian

● dnf update --refresh # redhat

● pacman -Syu # Arch

● Tools differ sometimes significantly and/or
have not the same feature-set

● And many times the package name differs
too – e.g. ssh in debian but openssh in
redhat...

Basic distro
● Bootloader (e.g. syslinux, grub)

● Linux kernel + glibc (GNU C standard library)

● Some fundamental tools including shell (command
interpreter) to do basic user-space tasks

● Init program and service manager (sysvinit, runit,
systemd…)

● Xserver to be able to run desktop

● Login manager or at least login command

● Desktop environment or Window manager

Bootstrap

 process

Terminology (1/3)
● Boot: Process of “bootstrapping” the OS (kernel)

● Bootloader: Small program which knows enough to find the OS kernel on the disk
and load it to memory where the kernel can execute itself

● BIOS/UEFI: Firmware on the motherboard which can find and start bootloader

● Disk: It can be classic Hard Disk, Flash Drive or SSD – in general a block device

● Block device: Any disk or medium (Floppy Disc) which supports Seek operation

● File: Representation of a blocks of binary data as a higher structure in the OS

● Filesystem: System of organizing file data and metadata on the physical/virtual
device (disk)

● Directory: Structure in the filesystem which enables collecting multiple files under
one node (think of a folder)

● Inode: Unique identificator of the file or directory on unix filesystem

Terminology (2/3)
● Program: script or binary executable in a form of a file

● Process: a program file loaded to a memory and executed

● PID: Process ID – we can reference our processes with it – it is unique

● CPU: Processing unit which can execute the process instructions

● Multiprocessor: A system with more than one CPU (core) – it can run multiple processes at
once

● Context switch: Usually OS is running more processes than it has CPU cores – so it must
pause and switch out and in different processes – this is costly operation but enables illusion
of multiple processes running simultaneously

● Thread: Lighter alternative to a process – it is a separate execution “thread” under the same
process

● Forked process: More traditional way of parallel execution – it has bigger overhead than
threads but it removes issues with dead-locks and double read/writes, races and all other
problems plaguing bad parallel code

Terminology (3/3)
● User: Usually unprivileged account in the OS, there can be many of user accounts and groups

● Root: Privileged user account in the unix-like systems (think of a superadmin)

● File permissions: Unix have ownership, attributes and permissions associated with every file

● Login: Process of accessing the OS as a user - credentials (username/password) is needed

● Shell: Traditionally after the login the user is greeted with a shell interpreter which was the
default user interface (command line interface)

● CLI: Command Line Interface

● Terminal: Emulated or physical device communicating via serial connection and traditional
user facing device where shell could be accessed (screen and keyboard) – now mostly
emulated as terminal application

● Script: Readable text file which can be executed in a similar manner as a program – it can be
written in any language as long it is supported (has interpreter)

Login prompt after the boot

Trivial init process tree
Notice that the „init“

process (PID 1) is a shell
binary in this example

which is not proper init in
the general sense

Recap
● OS must be able to run user programs

● It should manage the whole lifetime of such program/process
and return back to its default state

● OS abstracts the hardware and exposes it in the user space
via its interfaces

● Kernel is the core of the OS but not the only part

● There are many Operating Systems both in architecture and
feature sets

Final words
● Linux comes in great

variety…

● Positive for some

● Negative for others

● Linux itself is just the kernel

● Distros can differ in filesystem
layout, configuration files, admin
tools and software management

