

Petr Ospalý
August 2025

Files and Filesystems

Files (1/2)
● Linux is UNIX-like OS

● „On a UNIX system, everything is a file; if something is not
a file, it is a process.“

● File is an abstract structure to represent data

● File has a path, a name, metadata and the actual data (or
their representation – special files)

● There are multiple types of files – their type is stored in
metadata

● Type of file is not defined by extension like in Win/DOS

Files (2/2)
● Extension can be completely omitted (e.g. textfile vs

textfile.txt)

● Regular files: plain text or raw binary (data, image, video,
pdf, document etc.)

● Directory („folder“) is another type of file

● Disk (block device) is represented as a file

● Character devices – e.g. screen of terminal - are files too

● There are also pipes, sockets and other special files

Directory (1/2)
● Directory is a type of file where „data“ is a list of

files – directory „contains“ files

● It enables organizing files in a tree-like structure

● On *NIX system the forward slash “/” will signal
that the file is directory, e.g.: projects/

● Directories can be nested – tree-like hierarchy

● Each directory in the “path” is separated by “/”

Directory (2/2)
● Example of a directory

structure in „/usr/local“

● Directory can contains
regular files and other
directories

● /usr/local/etc/config.conf is a
full file path

● /usr/ is a top-level directory
while local/ is subdirectory

Path (1/2)
● Each file has a name which must be unique inside

a directory

● There could be two or more files of the same name
if they differ in the path

● Path is a composite of a file name and directories in
which it resides (“/usr/local/etc/” + “config.conf”)

● E.g. these directories might exist simultaneously:
/bin/, /usr/bin/ and /usr/local/bin/

Path (2/2)
● Any path starting with slash “/” is so-called

absolute path

● Single slash is also a path - it is absolute path of
the root of the directory tree

● Path which does not start with slash is called
relative path

● Relative path is relative to your current directory

Filesystem (1/4)
● Filesystem is a system how to organize and store files (different

OS will have different “native” FS – most of OS will support plethora of
different filesystems)

● Simple filesystem can be a FAT (File Allocation Table) from DOS - it is
primitive and limited (easily fragmented, maximum size is 4GB per file,
etc.)

● exFAT is modern replacement and suited for SD cards and flash drives

● NTFS on Windows is advanced journaling FS with a feature list similar
to Linux and other modern OS (like encryption, compression, acls, etc.)

● Linux is capable of reading and writing to Windows/DOS FS but these
do not support all *NIX metadata (e.g. ownerships and permissions)

Filesystem (2/4)
● True *NIX FS can store full file permissions and metadata

needed for proper function of any UNIX-like OS

● Even amongst *NIX OSes there are many vastly different types
(ext2-4, zfs, btrfs, hammerfs etc.)

● Most of them will have journal (all writes are logged in a journal
for consistency and resilience)

● ZFS (ported to Linux) and btrfs (native to Linux) are more than
just FS: they provide features not seen elsewhere (copy-on-write,
effective cheap snapshots, extra protection against bit-rot with
checksumming, volumes, raids, encryption, compression etc.)

Filesystem (3/4)
● Running OS can have deployed (mounted) multiple FS at the

same time

● UNIX had unified look on all its files via hierarchical tree-like
filesystem structure

● All FS are mounted under this tree structure as directory (so
no letters C:, D:, E:,… which is on Windows)

● Files are flat (just bytes), ordinary text is primary data type
(anyone can open, read and modify configuration with a text
editor, log files are also simple text files – or they should be…,
most tools will process plain text)

Filesystem (4/4)
● All *NIX FS (despite differences) share the concept of inode -

which is structure holding many information about a file

● Every (*NIX) FS has finite amount of inodes - new file will
allocate free inode from the pool and “deleted” file will
deallocate inode back

● Inode has unique identifier inside the FS and it also contains
metadata like timestamps, ownership, permissions and link
count

● Finally it holds the information where the actual file data are
stored in the filesystem (pixel bytes of a JPEG for example)

Partitions
● Storage (disks, block devices) can be partitioned into multiple

partitions

● To be able locate and use partitions a partition table must be
created on the disk

● MBR - Master Boot Record partition table is an old scheme from
DOS era and still commonly in use - all table records are stored
at the beginning of the disk and take less than 512 Bytes

● Modern GPT – GUID Partition Table is more flexible and resilient
(it has duplicated structures and not just in first 512 Bytes)

Mountpoints
● Filesystems are created on block devices and those can

be whole disks or partitions - FS is then mounted in the
running OS (onto directory)

● There can be multiple FS at once - all filesystems are
mounted somewhere under the root filesystem (“/”), e.g.:
mount -t btrfs -o subvol=/home,... /dev/sdb /home
 ^FS ^options ^disk ^mountpoint

● Example of all mounted FS in the OS:
/dev/sda1 on /boot type ext4 (rw,relatime,seclabel)
/dev/sda2 on / type btrfs (rw,seclabel,...,subvol=/root)
/dev/sdb on /home type btrfs (rw,...,subvol=/home)

Inode and hardlinks
● Inode does not contain filename - filenames are stored as data of

a directory inode (which “contains” the files)

● The inode keep tracks of links - these links are called hardlinks

● If file has multiple links then it only means that it is available under
multiple names (in the same FS) - data are stored only once

● File is deleted from storage only if link count drops to zero –
inode is freed

● Hardlinked file will share the same underlying inode which means
that changing data on a file will also alter content of all its
hardlinked “copies”

Special directory hardlinks
● Hardlinks cannot cross filesystem boundary and they

cannot be used on directories to avoid loops in directory
tree

● Nevertheless every directory has inside two special
hardlinks:
single dot (“./”) and two-dots (“../”) links

● One-dot hardlink references the directory itself

● Two-dots hardlink references parent directory (one level
up in the path)

Symlinks
● Symlink is a symbolic link - it will not raise link count

in the inode

● Symlink is just another type of file - its data is a file
path – even across FS boundary, directory or even to
itself (useless though – cyclic reference)

● It is similar to URL link but for files - it also can be stale
and point to nothing – broken link

● Windows has similar feature - symlinks to folders or
applications

Little bit of shell: ls (1/2)
● The following examples will be using the output of command

„ls“ (list directory contents)

● Usage without any argument:

● Adding argument “-l” will create more descriptive long listing

● Adding argument „-i“ will add column with inode numbers

● So we can use it as: “ls -l -i“ or shorten it to: “ls -li“

Little bit of shell: ls (2/2)
● There is a convention on *NIX systems where files starting with a dot „.“ are „hidden“

● These are so called dot-files (do not confuse with hidden files in Windows – very
different semantics)

● And so “ls” command will not show them but adding argument “-a” will tell the “ls”

command to show all files:

● There is more happening behind the scene – the colorful output is achieved with more
trickery by aliasing the ls command – aliases are out of scope for the moment

● All put together we can use the following to get the final outputs:
“ls --color=auto -aliF”

Example (1/2) Links:

- myfile1 is a regular file
- myfile2 was created as a hardlink
- myfile3 is a symlink to myfile1
- myfile4 is a broken symlink (to non-
existent target)

Inode numbers:

Notice: myfile1 and myfile2 have the
same inode number!

Example (2/2)
Special directory hardlinks:

- Single dot (pointing to itself)
- Two-dots (pointing one level up)

Notice: Both are appended with
a slash „/“ - meaning - they are
directories (links to directories)

This is “permissions” column (explained in a
moment) but notice the first letter per every line –
that denotes the type of a file:
„d“ means directory, „-“ is regular file, „l“ for
symlink, „b“ block device, „c“ special device, „p“
for pipe, „s“ for socket

File Ownership
● All files have owner and belong to a group

● Owner is “usually” a user on the system – but in terms
of file ownership it is just an UID number

● UID stands for User Identification

● Some UIDs might not be actually assigned to any user
on the system – so an UID number will be shown
instead of a name

● Same applies to groups and GID – Group Identification

Briefly on Users & Groups
● *NIX systems are multi-user environments and both files and

processes are insulated per their user and group membership

● Users cannot overwrite each other’s files unless they explicitly allow it

● User with UID zero is root – superuser – it has unlimited access to
the OS – it can do anything!

● User accounts are stored in /etc/passwd file (passwords are in
/etc/shadow)

● Groups are in /etc/group (rare group passwords are in /etc/gshadow)

● CLI utils for reference: useradd/adduser, groupadd, passwd, gpasswd,

usermod, groupmod, su, sudo and others

Example Ownership – two columns:

1. column is user name (or UID)
2. column is group name (or GID)

In this case the owner is root and files
belong to group named also root.

Little bit of shell: useradd
● Creating new user named „friday“

● useradd ← command name

-md /home/friday ← creating home dir

-g users ← adding to group “users”

-s /bin/bash ← default shell for the user

--uid 1001 ← setting UID number

friday ← actual username

Little bit of shell: chown

● Within the directory in the picture above we run the following:

chown friday myfile1 ← changing the UID only

chown -h friday:users myfile4 ← changing UID and GID both

Notice: We need to use -h to not dereference because myfile4 is broken symlink

Result
New ownerships:

- myfile1 belongs to user “friday” now
- myfile2 was affected too because it is just hardlink
- myfile4 belongs to user “friday” and also group “users”

Without “-h” option the second chown command would fail
because it would try to change ownerships on nonexistent
myfileX...

File Permissions (1/9)
● Traditional UNIX file permissions have three separate categories of access:

user (u), group (g) and others (o)

● Each category has the same scheme of permissions:
read (r), write (w) and execution (x)

● In ls command we can see them as “---” up to “rwx” and anything in between

● They are actually implemented with three bits each - number two (0 or 1 per
bit) on power of three (bits) gives eight possible values (23 == 8)

● This means that we can have something like this:
“rw-rw-r--” or “rw-------“ where every three letters represent user,

group and other permissions respectively

● The letters can be replaced with octal values (0-7 for each three bits)

File Permissions (2/9)
● We can visualize the values of bits like this:

BIN 000 001 010 011 100 101 110 111
SYM --- --x -w- -wx r-- r-x rw- rwx
OCT 0 1 2 3 4 5 6 7

● First row shows values in binary per each bit

● Second row shows the mnemonic representation

● Third row is in octal base – for those used to the numeric
representation it is often more quick and pleasant to use the
octals, e.g.: instead of rwxrwxrwx we use 777

File Permissions (3/9)
● Permission rights have slight semantic difference for directories and

non-directories (not really if we realize that directory is a file...)

● Read right enables the user (group or others) to read the content of a
regular file or list the content of a directory

● The ability to read file has consequence of being able to create a copy
of the file and change the permissions on said copy...

● Write right enables modification of the content of a file (truncating,
appending, rewriting etc.) and its metadata (e.g. permissions...)

● Write right on a directory let you write (create) new files inside a
directory or delete them (even if they don’t belong to the owner of
directory and regardless of permissions on those files themselves)

File Permissions (4/9): Example
Permissions:

- myfile1 has read and write rights for user but only read rights for group and others
- myfile3 is symlink and those are usually “pass-through” so with full rights but the
referenced file will preserve its actually permissions as-is!

So in this case only user can write to myfile3 despite symlink is showing write bits on
group and others (because the referenced file is myfile1…).

File Permissions (5/9)
● Execution right has specific functionality:

– on a regular file: it tells the operating system that this file can
be executed (e.g. program to run)

– on a directory: it enables the directory to be „traversed“ – to be
entered and reach its subdirectories

e.g.: path /dir1/dir2/data/ where /dir1/ and dir2/

have both permissions set to --x--x--x (111) – we cannot list

contents of either dir1 nor dir2 but if we know that data/

directory is buried there then we can reach it and actually list its
content if data/ has read permissions

File Permissions (6/9): Example
Content of dir1/ - notice the

permissions of dir2/ – they are 775 –
both read and execute rights (same

is for dir1/ at this moment)

Content of dir2/ - notice
the data/ subdirectory

Here we did set both dir1/ and
dir2/ permissions as 111

ls fails to read their content because
read permission is missing...

…but we can still read content of
data/ directory

File Permissions (7/9): Example
● Let’s create very simple shell script:

#!/bin/sh
echo SUCCESS

Saved as /tmp/myscript

The execution failed twice:

1. Shell tried to find the command
in its PATH (off-topic)
2. Missing execution bit (on-topic)

Added execution right let us
run the script successfully
(„./“ is needed unless PATH
is modified – see later)

File Permissions (8/9)
● We can set special permissions on the files which uses another three bits of

information (they go before the regular permissions bits, e.g. 1777 where 1 is
„sticky bit“ – one of the special permissions)

● The bits and symbol representation (usually only one of the bit is used on a file):
BIN 000 001 010 100
SYM - t Sg s
OCT 0 1 2 4

and where:

– t: stands for sticky bit (this on a directory prevents non-owners to delete files inside)

– s: setuid (a bit that makes an executable run with the privileges of the owner of the file)

– Sg: setgid (same but with the privileges of the group of the file – explored elsewhere)

● In numeric mode they can be written as a single digit between 0-7 (as with regular
permissions) – or omitted (as they usually are) – bit combinations are rare

Flipping on special permissions will
make symbol representation less neat,
e.g. 1777 will be rwxrwxrwt instead of
trwxrwxrwx in the ls output

File Permissions (9/9)
● Let’s skip setuid and setgid for the moment (it will be covered elsewhere)

● Sticky bit is common and used on “globally” writable directories like /tmp/
where it prevents unprivileged users (non-root) from removing or renaming
any file which does not belong to them

● /tmp/ is the standard place of system-wide temporary directory

● Temporary directories are used for throwaway files which are needed during
lifetime of running process (e.g. file locks) or the system and for all sorts of
short-term usage, but which do not need to survive reboot

● Temporary directories start empty and clean upon system reboot and
there is more than one usually – sprinkled whenever there is a need for them
– modern Linux will usually mount them with a special memory filesystem:
tmpfs (e.g. here: /tmp/, /dev/shm/, /run/, /root/tmp/...)

Little bit of shell: chmod
● Command chmod serves to set and modify the file permissions – it can have

rather complex usage in comparison with commands mentioned

● There are two main modes often used:
– chmod [ugoa][+-=][rwxXst],... myfile.txt → uses symbols and enables updates

– chmod [0-7]... myfile.txt → uses numerics and sets all at once

● Best is to see on examples (every bullet has equivalent alternatives):
– chmod a=rwx file.txt
chmod ugo=rwx file.txt
chmod 777 file.txt

– chmod go-w,a-x file.txt
chmod go-wx,u-x file.txt
chmod 644 file.txt

– chmod u+x file.txt
chmod 744 file.txt

0777/-rwxrwxrwx

0644/-rw-r--r--

0744/-rwxr--r--

Little bit of shell: umask
● When file is created – the program decides on its permissions (usually 0666) but before the

file is actually committed to FS an umask (file mode creation mask) comes to play…

● umask: it is command which shows or set “umask” for your default permissions (e.g. 0022):
BIN 111 111 111 111 (full permissions 7777)

BIN 000 000 010 010 (umask 0022 – notice only two bits are true… writes for non-user)

BIN 111 111 101 101 (negated mask 7755, logical XOR)

Finally we apply the negated mask to the actual file mode wanted by program (e.g. 0666) by
applying logical operation AND:
BIN 000 110 110 110 (program creation mode 0666)

BIN 111 111 101 101 (negated/complement mask 7755)

BIN 000 110 100 100 (result after AND: 0644)

umask (e.g. 0022) is basically a filter which filters out certain bits...

● Usually OS will prevent programs to set execution bits on file creation despite umask values

Significant directories
● Linux Filesystem Hierarchy Standard (FHS)

● /boot – bootloader files, kernel image, initial ramdisk and other needed for boot

● /dev – files representing devices

● /proc – virtual filesystem, user space interface with Linux kernel and processes

● /bin, /sbin – places with important binaries (programs) often used early in boot process

● /lib, /lib64 – shared libraries

● /etc – canonically a place where all configuration is stored

● /home – usual path for user „home“ directories

● /root – home directory of superuser

● /tmp – temporary files

● /usr – majority of installed software will be here (/usr/bin, /usr/sbin, /usr/lib…)

● /usr/local, /opt – reserved for machine-specific custom software installations

● /var, /var/log – place for „variable“ data, e.g. log and database files

Shell commands so far...
● We came across quite a few CLI tools during this

presentation:

– ls, useradd, chown, chmod, umask

– some mentioned only for reference (more on them elsewhere)

● We will need much more though to complete our
excursion to files and filesystems:

– cd, pwd, mkdir, touch, rm, rmdir, ln, stat,
unlink, cp, mv

● Luckily they are simple to use and understand

Shell basics (1/10)
● Take a look at this CLI session and see if you can make sense of it

(explanation will be on the next slide)

Shell basics (2/10)
● A file „name“ will always be either relative or absolute pathname

(e.g.: dir1/file.txt, file.txt, ../file.txt, /file.txt, etc.)

● pwd: prints current directory (where you are located)

● mkdir: create new directory (argument is a directory name; there
is useful option: “-p“ which will create all intermediary dirs)

● cd: change directory (argument is directory path – relative or
absolute)

● ls: This command was covered already but let’s remind some
useful options: -l (long listing), -i (show inodes), -1 (output in

columns), -a (show hidden dot-files)

Shell basics (3/10)

1. creating directory
structure dir1/dir2
2. creating file
„newfile“
3. creating hardlink
and symlink with ln
command
4. removing all new
files with unlink
command
5. failing to remove
directory with unlink

Shell basics (4/10)
● touch: simple command to create empty files but also to

“touch” existing file and change their access and
modification times in their metadata

● ln: This command without an option will create hardlink:
ln <original file> <hardlink name>

or symlink with the -s option:
ln -s <original file> <symlink name>

● unlink: Removes the file link – which will reduce “link”
count from inode – so effectively removes the file link – it
cannot unlink directories...

Shell basics (5/10)
Command stat will show you
detailed metadata information
on a given file (actually the
inode) – notice the
timestamps and links count
(showing two because of
hardlink)

We deleted the „original“ file

and used stat command on
its hardlink – as you can see
links count dropped to one,
also modification timestamp
changed but otherwise it is
the same – because it is the
same inode...

Shell basics (6/10)
● stat: it will show inode metadata in full on a given file name (file

link – same thing); the option “-f” will show information on
filesystem where file is stored (quick way to find FS name)

Link count

Shell basics (7/10)
1. removing file with command
rm (in this case same result as
with unlink)
2. creating new test file and
removing it with the option “-i” –
that will ask interactively the
user for permission
3. cd .. uses two-dots link to
move up in directory structure
4. rmdir will fail to delete
directory if it is not empty
5. rm with the option “-r” will
delete content of a directory
recursively – all files –
careful...

Shell basics (8/10)
● rmdir: Safe deletion command for directories – it will remove only empty; in the

case of chained empty directories like “dir1/dir2” we could shorten two
commands: rmdir dir2; rmdir dir1;
to just (with option -p): rmdir -p dir1/dir2

● rm: Where unlink and rmdir fails, rm can be used – it can be dangerous when
used mindlessly… options to remember:
-r ← recursive deletion for directories and their content

-i ← interactive option which will always ask for permission

-f ← forcefully delete file(s) => ignore missing files and don’t ask for

permission…

If you see command (scripts or copy-paste from web) starting with “rm -rf” then
focus and be super vigilant (especially if there is “*” asterisk…) and get to know
what are you about to do...

Shell basics (9/10)

1. creating newfile
2. changing ownership
3. copying (cp) the file
without preserving
permissions and ownership
4. Copying (cp) the file while
preserving the permissions
with “-a” (this option is overkill
here “-p” would suffice)
5. moving/renaming (mv) the
second copy – notice the
ownership is not changed...

Shell basics (10/10)
● cp: It expects the original file and the new destination name, options to remember:
-r ← recursive copy for directories and their content

-p ← preserve metadata like permissions, ownerships, timestamps

-a ← archive this combines multiple options into one including (-r and -p)

-i ← interactive option which will always ask for permission

-n ← no clubber which will not overwrite existing file

-f ← forcefully copy => replace existing destination files and don’t ask for permission…

”cp -a” is usually what you want most often...

● mv: It will rename a file or move a file into another directory, options to remember:
-n ← no clubber which will not overwrite existing file

-i ← interactive option which will always ask for permission

-f ← forcefully move => overwrite existing and don’t ask for permission…

● ls: New usage: “ls -l <name>”; you can add as many file name arguments as you want
including directories but if you don’t want to list content of a directory then add option “-d”

Briefly on storage (1/9)
● Attention! Commands in

this section are
dangerous… and they will
delete your data if not
careful…

● If there is a graphical app
with some safeguards and
guardrails then use that!

● For example GParted is
very capable and easy
enough to use...

Briefly on storage (2/9) This is USB flash
drive inserted into a
Linux system (as
/dev/sdb).

I recommend to
always use symlinks
in /dev/disk/by-id/ to
avoid accidentally
selecting wrong
disk...

We could use old fdisk for MBR styled disks or modern gdisk
(useful for advanced tasks) but this sessions uses parted for
simplicity:

1. enter parted session and print disk (p for short)
2. create new part. table with mktable
3. there are plenty options but we used MBR/msdos
4. creating part. with mkpart, for MBR specify primary, (FS type is
irrelevant here – no FS will be created), starting sector or byte
(1MiB in this case) and end sector or byte or simply percentage like
we do here 100%

Briefly on storage (3/9)

Notice that we got new symlink in /dev/disk/by-id pointing to
the new block device (partition) – we will use this destination for
a new filesystem.

Creating new exFAT FS with mkfs.exfat command (label
MYGENUSB_8G is arbitrary and optional)

1. creating new directory as mountpoint in /mnt/
(name is irrelevant and destination too)
2. mount the filesystem located on first partition
3. checking that is actually mounted by “grepping”
4. printing filesystem usage with df command

„mount|grep …“

Ignore this for now...

Briefly on storage (4/9)
1. creating some directories and file onto the new
filesystem we created and mounted earlier
2. verifying that files exist and unmounting the
filesystem with umount command
3. listing the mountpoint shows no files anymore
because we unmounted the filesystem where files
were stored...

1. mounting the filesystem back
2. checking the content (all files are back again)
3. trying to unmount is failing because our shell
session is inside the mounted path…!
4. cd out of the mountpoint allows the umount
command to succeed (no process is hogging the
path anymore)

Briefly on storage (5/9)
● gdisk: Not used here but when the block device have orphaned MBR or GPT

structures then this command can „zap“ it and make clean slate on the disk

● parted: Easier to use than fdisk/gdisk with better readline interface (all interactive
commands can be passed as arguments so it can be used in scripts too)

● mkfs, mkfs.exfat: mkfs accepts “-t <fstype>” argument so in our case we

could do “mkfs -t exfat …“ with the same result; useful option for exFAT and

other FATs is
“-L <label>” as we used here; describing other fstypes is out of scope

● mount: Usually “mount <device> <mountpoint>” is enough but in some

cases it is needed to explicitly state the fstype and add extra options:
 mount -t btrfs -o subvol=/home,... /dev/disk/by-id/... /home
 ^FS ^options ^disk ^mountpoint

● umount: Simply to unmount the mountpoint

Briefly on storage (6/9)

We will reuse this flash drive for
next exercise so let’s wipe it clean
first.

1. verify that location did not
change
2. verify that it is not mounted
3. use gdisk to switch to expert
mode and „zap“ any GPT or
MBR on the drive

Briefly on storage (7/9) Here is downloaded
bootable image of Linux
distribution (ISO file) and
also the checksum text
file.

We can verify with
sha256sum command
that it is not corrupted.

We are running dd command but we split
its long argument list to multiple lines by
ending each line with backslash “\” before
hitting enter.

The if=, of=, bs= and status=progress is
sufficient usage for writing files with dd.

DO NOT FORGET to sync
the data to the device…
otherwise some might be
lingering in memory only...

Briefly on storage (8/9)

If we reinsert the USB flash drive back then
modern desktop will usually automount it.

Here we can see that fstype is iso9660 and we
have glimpse of the content on the drive.

In actuality makers of the ISO file crafted it in
such a way that it is both MBR and GPT for
BIOS and UEFI machines and inspecting it with
parted, fdisk or gdisk commands might give
you a headache… Treat it as a binary blob.Notice that we unmounted

with the device as the
argument and not
mountpoint… Both ways are
valid.

Briefly on storage (9/9)
● sha256sum: Run sha256 checksum on a file and also check against the

checksum file if provided with argument “-c <checksums file>”

● sync: It will flush all uncommitted writes to the disk(s) – always use after
command like dd

● dd: This command will not ask for permission to overwrite your data – so
always double-check that you are writing where you think you are writing…
The most common usage was demonstrated with “baking” ISO file onto
flash drive:
if=<source> ← Input File (e.g. disk, device...)

of=<target> ← Output File (e.g. disk, device...)

bs=<blocksize> ← More useful in combination with “count=<number>”

status=progress ← Show status (by default dd is silent)

”dd if=/dev/zero of=./myfile bs=1M count=1024” will create 1GiB “empty” file

Loop devices (1/3)
● We can create a file of any desired

size with dd command (here we
simply using special device
/dev/zero as source)

● We can create filesystem (ext4 in
this case) onto this file

● Magic happens with a losetup tool
which will allocate for us special
loop device

● We can then map our file onto it and
mount it (with the option “-o loop”)

s

Loop devices (2/3)
● Notice that ls will report the size of our disk file as

100M (that is expected – we dd 100 times 1M)

● (Disk Usage) tool du reports only 4.4M (that is
because underlying FS supports sparse files)

● Another (Disk Free) tool df can tell us filesystem
usage

● This time we dd not zeroes but pseudorandom
bytes from /dev/urandom onto our empty “firstfile”

● We can see the difference with df command in the
usage of the FS

● Tool truncate shrinked the file back to zero bytes
and df reports 1% usage only again

● Although the expanded disk usage of the testdisk
file remained (25M) – once used sectors are no
longer sparse

● Lastly umount and release the loop device
“losetup -d <loop device>”

Loop devices (3/3)
● df: Disk Free command – reports filesystem usage; useful option is “-h” which gives “human

readable” values (K, M, G...) instead of long byte values

● du: Disk Usage command – by default it will show real amount of bytes a file is using on the
filesystem; useful options:
-h → human readable format

-s → summarize the result

-c → show total (in the case of more than one file argument)

--apparent-size → it will report the “claimed” size (what ls would show)

-x → stays in one FS (skip mounted FS in some subdirectory)

”du -shx /dir” is useful command to calculate how much space this directory is taking on your FS
without counting submounted filesystems and their files

● losetup: Tool to manage loop devices, imported options:
-a → list all active loop devices

-f → find new unused loop device to be attached to a file (losetup -f <myfile>)

-d → detach the loop device (losetup -d /dev/loopXYZ)

● truncate: Used for resizing a given file – common usage: truncate -s <newsize bytes> <file>

Final words
● Everything is a file in UNIX-like system and a text file is the most

prevalent data around which many tools orbit

● Filesystems on UNIX-like system is hierarchical tree-like structure

● Symlinks are used to circumvent and “break” this tree hierarchy

● Inode is the universal underlying file structure on UNIX-like filesystem

● UNIX-like systems have distinct ownership and permissions

● This was long and exhaustive presentation on a very extensive
topic and yet we covered only the surface...

● Although it should be enough of a headstart to build more skills and
knowledge as time goes on

