

Petr Ospalý
Sep 2025

More on Shell

GNU (GNU’s Not UNIX)
● Initially GNU supposed to be fully functional OS based on microkernel

(hurd) but it never came to be and instead GNU got stuck with vast
ecosystem of utilities but no usable kernel – that changed with Linux

● Many components distributed with Linux distribution come from the GNU
project – most of them can be replaced with alternatives except glibc
(std. C library) and gcc (C compiler) for which Linux kernel depends on

● GNU zealots will demand the use of the term GNU/Linux – feel free to
ignore them :)

● Next to the gcc compiler the other most influential contribution to the
world at large were GPL (copyleft) licenses – Linus Torvalds attributes
the success of Linux to picking the GPL 2.0 license for it

REPL
● Read-Eval-Print-Loop

● Used in interpreted languages and shell environments (like in python,
smart switch CLI, UNIX shell, browser javascript console etc.)

● It is command line interface where instructions to the interpreter are
separated by newline – interpreter reads the command (hitting
ENTER key will evaluate/execute the command)

● Long lines could usually be split visually (with backslash technique)

● Each command then can print out some output (does not need to)
and interface is ready for another input (looping back to read)

GNU BASH
● Interactive shell of our choice during this course will be BASH (Bourne-Again

SHell)

● It builds upon the traditional UNIX shell:
Bourne Shell

● Scripts in this course will target POSIX shell specification avoiding any bashisms

● The reasons to avoid scripting for BASH:

– Bash is not a default shell everywhere and installing it is not always option

– BSD *NIX systems use csh, ksh and other shells

– “Minishells” like Busybox are also commonly encountered and will not support bashisms

● The reasons to use BASH as login/interactive shell:

– More pleasant to use with many conveniences (next slide)

– Feel free to replace Bash with zsh (more features and more conveniences)

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/POSIX
https://linux.die.net/man/1/checkbashisms
https://en.wikipedia.org/wiki/BusyBox

GNU Readline
● Bash is using readline library for its interactive input which provides many nice

features:

– TAB completion (killer feature for interactive shell) – hitting TAB key on the keyboard will
complete the command or list possible options on double-tap[*]

– Command history

– Line editing

● [*] Learn to use TAB completion – it will change the way you use your
terminal and shell…

● There are two modes to use the readline (“set -o emacs” vs “set -o vi”):

– EMACS mode (the default) – this presentation will work with the default mode

– VI mode (as a Vim user I suggest to try this mode for VI-enthusiast)

● Next text will use terms like Bash, shell, command line etc. interchangeably without
mentioning readline again

Pagers
● Sometimes (often times) the program output has too many lines to fit in your

terminal window or console screen – in that case chunk of it will scroll out of
sight

● Terminals usually have scroll bars so there it is not as big issue but virtual
console or serial console will not have them…

● The solution is to store the output in a file (more on that later elsewhere) or by
using pager

● Pager is a tool which will enable “paging” the output in your terminal screen
one page at a time so you can see the whole output

● Some pagers will not allow to return back by page (old “more” command)

● Many in use will enable back and forth scrolling, searching and quick
navigation

History
● Bash has “history” command which will output all commands

used in the past – up to a set limit in shell variable HISTSIZE
(on variables soon)

● The history is stored in a file defined by shell variable
HISTFILE – default value points to inside a user directory as a
dot-file (“hidden” file): .bash_history

● To use the history hit arrow keys (up/down) in shell prompt to
reuse commands from the past

● Bash also can “search” the history by repeated hitting CTRL-r
(backward search) and typing the pattern to search for

Manpages (1/3)
● Long overdue introduction to this crucial faculty...

● UNIX had brilliant built in documentation – the so called
manpages (manual pages)

● UNIX-like systems still use these and they should be
installed on any sensible Linux distribution – you can
also find them online

● You can access manpage of any tool/command with the
command: man <command name>

● Start with: man man (quit by hitting “q” key)

https://linux.die.net/man/

Manpages (2/3): man man

Manpages (3/3)
● Some names conflict; for example shell command printf and C

function from standard library also named printf

● Typing “man printf” will return manpage of shell command which
you will want most in this course but to get manpage for C function
you must switch to different section: man 3 printf

● Opening manpage will bring you to a pager:

– Arrow keys, page-down/up will enable navigation

– Hitting “/” will bring up pattern search (bottom of screen)

– Type search term and hit ENTER

– Hitting lower-case “n” and upper-case “N” will cycle through found matches

– Quit by hitting “q” key

Other help (1/2)
● Since we introduced manpages – it is good from now on to explore the

documentation for every new command or tool we will mention… “man <new tool>”

● Apart from manpages other resources can be utilized

● There might be GNU “info” command for extended documentation of GNU
programs (try “info info”)

● Sometimes you want to do something but you have no idea what utility provides the
feature – in such case “apropos” command might be of use; the simplest use:
apropos <search term>

It will search through manpages for this term, e.g. “apropos editor” will list every
installed program which might mentioned the word “editor” in their name or
description

● Many commands have built-in help accessible via command argument: -h or --help

Other help (2/2)

Shell Variable (1/4)
● Shell/bash is not just a executor of commands (although that is it’s main

purpose) – it is also a programming/scripting language

● This series of presentation is not about shell scripting though...

● Some programming constructs will be shown where appropriate

● Nevertheless – usage of shell variables even outside of shell script is
common

● Variable name can be any alphanumeric string including underscores,
e.g.: “_var”, “var1”, “MYVAR”, etc.

● Value can be any arbitrary string (even empty)

● In some contexts a string of digits can be interpreted as a numeric value
(integer)

● Usually in scripts an empty string serves as a boolean False

Shell Variable (2/4)
● Syntax to set and declare a variable: NAME=<value>

(no space around the equal sign „=“)

● If the value contains „whitespace“ (spaces, newlines, tabs) then it must be either
prefixed with backslash or enclosed in single or double-quotes:
value\ with\ spaces\ in\ it
’value with spaces in it’
“value with spaces in it“

● The shell variable is then used via variable expansion by prefixing the name with a
dollar sign “$”:
$myvar → will return the value

● This syntax cannot be recommended though due to the way shell parse and
evaluate these expansions… (see on the next slide)

● If you want to “delete” the variable then it must be unset: unset myvar

Shell Variable (3/4)
● Always wrap variable name in curly braces and surround it with double-quotes:
”${myvar}” → the correct way (you cannot make a mistake with it ever...)

● Best way to showcase the differences is with examples, let’s have this definition:
var=’123’

(added quotes but not needed in this particular case – defensive programming)

● Let’s use the variable in the following expansions:
$var → 123
${var} → 123

’${var}’ → ${var} → single quotes prevent expansion

\${var} → ${var} → same with backslash

“${var}“ → 123 → this is the correct way

$variable → (EMPTY) → we turned “var” to “variable” which is undefined

${var}iable → 123iable → curly braces fixed it

“${var}iable” → 123iable → the correct way

Shell Variable (4/4)
● Syntax recap:

– Dollar sign „$“ triggers expansion

– Curly braces separates variable name from surrounding text

– Single quotes prevent any expansion

– Backslash in front of dollar sign prevent the expansion too „\$“

– Double quotes enables expansion and hold string with spaces together as one token

● The reason why quotes are needed will be apparent in more advanced
examples elsewhere

● The „\$“ sequence is called escape sequence… backslash is used this way to
halt any special meaning a symbol can have... for example:

– ‘this string\’s value is inside single quotes’

– “this string shows one backslash (\\) and one double-quote (\”)“

Shell Environment (1/4)
● Shell will create an environment (set of variables) upon it’s start

● These variables can be changed any time during the session or prior inside a
shell initialization files

● To see the current status of environment use this command: printenv

● List of environment variables will differ based on OS, context, desktop, global
settings, user setup etc.

● User defined shell variable (e.g. MYVAR) can be „exported“ to the
environment as: export MYVAR

● There is no restriction on variable names but one can choose lower case
letters for variable names to avoid conflicts with implicit and default
environment variables which are canonically upper case

● Prefixing/postfixing with an underscore also works: _MYVAR

Shell Environment (2/4)
● Below are variables good to know and recognize:

● IFS: Actually content of this variable will decide how string is split into tokens/fields and
although the default *is* whitespaces but it does not need to be: <space><tab><newline>

● PWD: Value is the same as of the pwd command

● HOME: Current user’s home directory; “tilde” character “~” can be used instead – it will be
expanded by the shell to actual filepath

● USER: Current username

● SHELL: Current running shell

● TERM: Virtual terminal emulation mode (e.g. xterm)

● EDITOR: This will set the default editor program for shell and many utilities (like visudo,
vipw, git, etc.) - on editors later

● DISPLAY: Set for X.org desktop (it tells the GUI app where to draw a window; useful to
modify in case there are multiple xservers available)

Shell Environment (3/4)
● PATH: Contains filepaths/directories separated by colons “:” - e.g.:
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

– PATH variable is used when user try to run a command and the command
name is not an absolute nor relative path

– Shell will try to locate the executable of the same name as the command
within these directories and in this order

– This command will *not* use PATH variable: ./myscript

– This command *will use* PATH variable: myscript

It is often needed to modify the PATH so your custom locations can be
searched too – for example we might want to add our own “~/bin“
directory:
PATH=“${PATH}:${HOME}/bin“ → notice the expansions

Shell Environment (4/4)
● LANG, LC_ALL, LC_*: Determines locale for the

session and language in which commands should
return their output if they support the locale – the basic
value “C” should be always implemented (English)

● LC_ALL has the highest precedence and overwrites
every category LC_* and LANG

● LANG is used if LC_ALL is not set and when some
LC_* category is unset

● LANG=C or LC_ALL=C is useful fix if the system has
set foreign incomprehensible locale

● To see what locales are supported in the system:
locale -a

● To get current locales:
locale

Globs: * (1/3)
● We just mentioned shell expansion of a variable: $VAR; which

is basically a placeholder for its value

● Very common feature of a shell is pattern-matching which
uses special characters to match filenames (globs)

● Do not confuse with regular expressions – those are
much more powerful and way more complicated

● The glob is then “expanded” to its matched filenames similarly
as shell variable expansion is expanded to its value

● Globs are very simple and limited – think of them as
wildcards; E.g.: *, *hoj, a*, a*j will all match the word: ahoj

Globs: * (2/3)
● Asterisk will match everything – except „hidden“

(dot) files – to match those a separate „.*“ must be
used

● The simplest kind of glob expression is asterisk
surrounded by characters from one or both sides

● If there is no file then glob expression will be
used literally… (in this case a single asterisk)

Globs: * (3/3)
● Extra examples of globs (for curious)

● ? matches one character exactly, [] defines
a set of characters to match, [!] defines
exclusionary set (both support range like
0‑9 and a-z)

● Notice that asterisk is hungry

● For any advance matching logic we have to
use regexp instead… (e.g. list only names
without “e” – no need to understand this):

Globs are limited –
you will get the most

mileage out of the
single asterisk „*“

alone.

Shell builtins (1/2)
● So far we used terms like command and programs

interchangeably but there is difference:

– program or binary is separate executable somewhere in the filesystem

– script is separate text file interpreted as executable

– shell builtin is integrated part of the shell itself and does not have
separate binary somewhere in the FS

● In most cases we don’t need to care unless we have a binary
which we want to use but it is „masked“ by a builtin

● Or we have more than one version of a program in separate
locations and we are not sure which is actually used...

Shell builtins (2/2)
● To decipher any command we can use the command (☺)

„type“: type <command>

● Let’s try it on cd: type cd
cd is a shell builtin

● So every time we use cd we are using shell builtin function

● If we try to read its documentation (man cd) then we will
get full manual page for bash itself – all bash features
including builtins are described there but...

● ...there is a better way to get help with builtins: help cd

Comments & echo
● Builtin echo is the traditional

„printing“ command in shell

● For scripting purposes though it
might be better to replace it with
printf (explained elsewhere)

● Comment in shell starts with „#“
and continues until the end of
the line – everything between
hash character and the newline
is ignored

● Picture is worth of thousands
words...

Executables (1/5)
● Let’s recap what executable on a *NIX system is:

– It can be a binary (program)

– It can also be a text file aka a script if it starts (on very first line)
with so called shebang (#!) line:
#!<path to the interpreter>

– Both binary and script must have execution bit set to be
executable (adding „exe“ extension like in DOS/Win does not
make file executable)

● Executables are searched in env. variable PATH, e.g.:

PATH=‘/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/
sbin’

Executables (2/5)
● When executable is invoked without a path (absolute nor relative) then

executable must be located in one of these locations in PATH (except
shell builtins for obvious reasons)

● If the executable is not in any of the locations defined in PATH then it
must be invoked with explicit location, e.g.: ~/myapps/someapp.bin

● Note: If your PWD (current directory) is the same as the executable
then you still must prefix the name with „./“ specifying current directory
(unless you add „./“ into the PATH – don’t do that…)

Why? Imagine: bad actor leaves a malicious binary in often used
directory – e.g. passwd; what happens if user tries to change their
password? Danger is mitigated by explicitly adding “./” to run command
from current directory.

Executables (3/5)
● PATH offers multiple locations for

executables/commands

● To discover conflicting commands
use: “whereis” and “which”

● whereis: returns all locations of
the command name and
manpages if they exist

● which: will return one executable
out of many potential options (as
shown by whereis)

– One out of all executables “which”
will be used

In this case „which“
returns an alias and
the aliased binary
(aliases will be
covered soon...)

Executables (4/5)
● Curious case of cd...

● whereis and which will report
command location at /usr/bin/cd but
when we try to use that program – it
seems to not work...

● ...on the other hand the builtin works
correctly

● Let’s run command “file” for further
analysis – it returns filetype description

● The reason is: /usr/bin/cd is actually a
script which calls “builtin cd” inside
but in a subshell and that does not
affect the current shell and the current
location…

#!/usr/bin/sh
builtin cd "$@"

„file“ command will
attempt to detect
what kind of a file
the argument is
based on its
content.

Why such script
even exist? Just to

satisfy POSIX
standard...

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xcu_chap01.html#tag_23_01_07

Executables (5/5)

● Let’s duplicate the cd script to a new path

● This time whereis returns two executable options (option “-b” will print only
binaries and skips manpages)

● And which returns first match based on the order of directories in the PATH (We
skipped quotes around $PATH here as the value is “sane” but we should follow
our own advice and use quotes every time – one day it might bite us...)

Shell aliases (1/4)
● We encountered an alias multiple times already

with the command ls

Shell aliases (2/4)
● Running the builtin alias as is

will print out all currently
configured aliases…

● The output is actually
identical to the way these
aliases could be set –
meaning; alias ls is setup
with a command:
alias ls=’ls -‑color=auto’

● So what is alias? It is simply
a shorthand for the value –
every time you use the alias it
is like typing it’s value instead

Shell aliases (3/4)
● We can always add more aliases to the current shell session; e.g. alias

below (“hide”) creates a hidden directory (leading dot) and moves all
visible files in the current directory to it:

alias hide=’mv -b * .hidden/’

This is a silly command just to demonstrate that even shell expansion and
globs (the asterisk „*“) works properly...

● Also TAB will work to autocomplete for you so you can condense long
commands to few clever aliases and pick the right one with few
keystrokes; e.g. by typing out “go2” and hitting TAB:

alias go2music=‘cd “${HOME}/Music/”‘
alias go2work=‘cd “${HOME}/Projects/”‘
alias go2mydrive=‘cd “/mnt/bigdrive/”‘

Shell aliases (4/4)
● Aliases are useful to condense long list of

arguments to a shortcut like here:

alias rbak=‘rsync -avzPHAX --numeric-ids ‘

● But also to create a “command” for often used
one‑liner or script which is too short to bother
to store in some file and location:

alias jpg2pdf=’for i in *.jpg ; do convert "$i"
"${i%%.jpg}.pdf" ; done‘

Shell profiles (1/7)
● We just learned about the aliases and shell builtin

alias

● But all our painfully setup aliases will disappear
once we open another shell session… or close the
current one...

● For that and other reasons every shell has a
profile file – where we can preset and preserve
our setup and do additional tasks like loading extra
config files or run ad-hoc scripts

Shell profiles (2/7)
● When an interactive shell (that is not a login shell –

e.g. every new terminal window...) is started, bash
reads and executes commands from ~/.bashrc (if that
file exists).

● We can save our alias commands there and they will
be restored with every new shell session

● We could also use a „source“ command

● Bash provides source builtin but the equivalent and
traditional „.“ dot-source builtin is POSIX compliant

Shell profiles (3/7)

Shell profiles (4/7)
● We could create a file like “.mystuff.sh” (any name will do

and no need to be “hidden”) with content similar to this:

my custom shell initialization file
alias rbak=‘rsync -avzPHAX --numeric-ids ‘
alias ls=’ls -‑color=auto’
PATH=“${PATH}:${HOME}/bin“ # adjusting PATH
export PATH

● Then we simply run the following on the current shell
session or add this line into „.bashrc“ (notice the dot):

. ~/.mystuff.sh

Shell profiles (5/7)
● When bash is invoked as an interactive login shell (or with

the --login option), it will source /etc/profile (if it exists) and
then it will read and execute the first file found in this order:

– ~/.bash_profile

– ~/.bash_login

– ~/.profile → this file is used by other shells too – not just bash

● When an interactive login shell exits, or a non-interactive
login shell executes the exit builtin command, then it
executes ~/.bash_logout and /etc/bash.bash_logout (if the
files exist)

Shell profiles (6/7)
● Shell profile files are mainly for the convenience of the

user and no script should be depending on some global
environment setup…

● This course is concerned with using command line and so
we care about conveniences in an interactive shell and
therefore our configuration will be limited to ~/.bashrc

● Typical things to set:

– Aliases

– Sourcing additional files and scripts

– Environment variables like PATH and PS1

Shell profiles (7/7)
● It can be helpful to customize

the shell prompt to show more
info and/or use colors for better
readability

● For that following shell
variables can be used:

– PS1: used as the primary prompt
string

– PS2: the secondary prompt string
(default “> “)

– There is also PS3 and PS4 but
we will care only about PS1

To make your prompt little prettier:

PS1='[\u@\h] \A \w\n% '

\u → username

\h → hostname

\A → time

\w → current directory

\n → newline

You can colorized it too but the value
would be indecipherable here.

There are generators online to try...

Unicode and UTF-8 (1/4)
● This topic would deserve a whole chapter but we touch upon it briefly

● Computers understand numbers (bits and bytes), „text“ is also stored as bits and
bytes – so there must be a higher level logic to interpret those binary values

● This abstraction is achieved by „character sets“ and “encodings”

● ASCII is one of the oldest and ubiquitous character set – all characters in this set
can be covered in one byte – it uses only 7 bits actually

● So ASCII is not only character set but also an “encoding” – the way character of a
particular set is “encoded” – 7 bits need just one byte – one encoding cannot be
simpler than that...

● Many “national” variations were created on top of it using the last bit which created
a lot problems during the early internet era and file sharing because a document
could be shown using wrong encoding (text would be mingled with “?” and similar)

https://en.wikipedia.org/wiki/ASCII

Unicode and UTF-8 (2/4)
● The problem was solved by comprehensive and exhaustive

international character set: UNICODE

● Unicode is another character set which associate a number to a
character via “code point” and currently the standard defines over
million symbols across all possible languages, including emojis

● Because Unicode character can be a big number which cannot be
covered by a single byte – multiple bytes must be used to represent a
single character

● Straightforward encoding can be UTF-32, UTF-16 which uses 4 bytes
and 2 bytes for each character respectively – this of course can be
wasteful for characters which has low numeric value like all ASCII
characters (which values match exactly into Unicode set)

https://en.wikipedia.org/wiki/Unicode

Unicode and UTF-8 (3/4)
● UTF-32 wastes a lot of space and UTF-16 cannot

represent all Unicode characters

● UTF-8 comes to rescue…it is a variable-width
encoding (some character will need only one byte
like ASCII and lesser used will need more bytes)

● It is the most widely used encoding on the internet
and a default on Linux and other modern systems

● The takeaway here is: Use Unicode and UTF‑8

Unicode and UTF-8 (4/4)

You can set your
preferred language
and encoding by
setting up the
locale environment
variables as we
shown earlier

Czech US English

Text Editor (1/2)
● It was mentioned before: primary data type on a UNIX-like

system is an ordinary text file

● Config files, services, many system tools are just plain text (e.g.
scripts, INI, JSON, YAML, XML etc.)

● Text editor is then a major utility on a Linux server...

● It is good to get familiar with at least one CLI editor because
sometimes graphical text editor might not be available (on
a remote server for example)

● Vi and improved ViM is the traditional UNIX editor but it might be
too much for a novice (you might encounter “emacs vs Vi” flame-
war – it is a running joke in the nix community)

Text Editor (2/2)
● nano might be a good

alternative

● It is simple and intuitive

● Setup your .bashrc with:

EDITOR=”nano”
export EDITOR

It must be installed first
of course...

Final words
● Learn to use manpages and use them often

● Utilize TAB completion… save your fingers from typing…

● Leverage shell history – it is your journal and help

● Commands to remember when not sure:

– man <command> → open manual page

– type <command> → check what is the executable

– help <builtin> → much easier than read through man page

– whereis/which <binary/script> → to find out executable location

– file <command> → to check type of the file

● Pick one and start using a CLI text editor (like nano)

